Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

QTAIM Atomic Charge and Polarization Parameters and Their Machine-Learning Transference among Boron-Halide Molecules

Texto completo
Autor(es):
Duarte, Leonardo J. [1] ; Bruns, Roy E. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Journal of Physical Chemistry A; v. 124, n. 17, p. 3407-3416, APR 30 2020.
Citações Web of Science: 0
Resumo

Atomic charges are invariant for out-of-plane distortions, making their molecular vibrations enticing for electronic structure studies. Of planar molecules, the boron trihalides contain some of the most polar bonds known to chemistry, although their out-of-plane bending intensities are very small contrary to expectations from atomic charge models. Here, the out-of-plane infrared intensities of the BX(2) X-(3) X-(4) (X (2), X-(3), X-(4) = H, F, CI, Br) molecules are investigated using quantum theory of atoms in molecules atomic charges and atomic dipoles within the formulism of the charge, charge transfer, dipolar polarization model at the QCISD/augcc-pVTZ quantum level. Dipole moments induced by equilibrium charge displacement of atoms perpendicular to the molecular plane are almost completely cancelled by their electronic density polarizations. The calculated boron trihalide intensities are small for molecules with such polar bonds ranging from 0.6 to 106.1 km mol(-1). Even though the CI atomic charge of -0.72 e in BCl3 is more negative than the hydrogen values of -0.67 e in BH3, the hydride out-of-plane intensity of 82.0 km mor is an order of magnitude larger than that of the trichloride, 6.3 km mol(-1). Owing to their diverse electronic structures, transference of atomic charges and dipole parameters among the boron trihalides is extremely challenging and does not result in accurate intensity values. For this reason, a machine-learning decision-tree algorithm was used to perform the transference procedure. Decision trees were optimized using quantum-level intensity values. Atomic charge and dipole parameters were estimated for a set of 12 test set molecules. These parameters provided intensity estimates with a root-mean-square error of 2.1 km mol(-1) compared with QCISD/aug-cc-pVTZ reference values. (AU)

Processo FAPESP: 18/24844-7 - Uso de tensores polares atômicos e parâmetros QCT para treinar um modelo de machine learning e prever constantes de Hammett
Beneficiário:Leonardo José Duarte
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado Direto
Processo FAPESP: 18/08861-9 - Aplicação do modelo QTAIM / CCTDP e machine learning para a previsão de reatividades químicas
Beneficiário:Roy Edward Bruns
Modalidade de apoio: Auxílio à Pesquisa - Regular