Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Using Machine Learning Radial Basis Function (RBF) Method for Predicting Lubricated Friction on Textured and Porous Surfaces

Texto completo
Autor(es):
Boidi, Guido [1] ; da Silva, Marcio Rodrigues [2, 3] ; Profito, Francisco J. [2] ; Machado, Izabel Fernanda [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] AC2T Res GmbH, Viktor Kaplan Str 2-C, A-2700 Wiener Neustadt - Austria
[2] Univ Sao Paulo, Escola Politecn, Ave Prof Melo Morais 2231, Sao Paulo, SP - Brazil
[3] Fac Tecnol Termomecan, Estr Alvarengas 4001, Sao Bernardo Do Campo, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES; v. 8, n. 4 DEC 2020.
Citações Web of Science: 0
Resumo

The coefficient of friction (CoF) obtained from tribological tests conducted on textured and porous surfaces was analysed using the machine learning Radial Basis Function (RBF) method. Non-textured and non-porous samples were taken as reference surfaces. Test parameters, such as entrainment velocity and slide-roll ratio (SRR), along with geometric characteristics of surface features (e.g. texture width and depth, coverage area, circularity, spatial distribution and directionality, among others), were selected as training dataset for the machine learning RBF model. The surface features were divided into designed patterns (dimples and grooves) manufactured by laser texturing, and randomised cavities (surface pores) resulted from the sintering process. The principal outcomes of this study are the effective use of the machine learning RBF method for tribological applications, as well as a critical discussion on its feasibility for the experimental dataset selected and the preliminary results obtained. Main results show that the Hardy multiquadric radial basis function provided an overall correlation coefficient of 0.934 for 35 poles. The application of the suggested machine learning technique and methodology can be extended to other experimental results available in the literature to train more robust models for predicting tribological performances of textured and structured surfaces. (AU)

Processo FAPESP: 16/25067-9 - Estudo do efeito de micro irregularidades superficiais (textura e porosidade) no comportamento tribológico de um aço sinterizado via SPS
Beneficiário:Guido Boidi
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 17/21151-8 - Efeito tribológico das micro irregularidades superficiais (textura e porosidade) em condições de rolamento e deslizamento
Beneficiário:Guido Boidi
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado Direto