Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Comparing the performance of sulfonium and phosphonium ionic liquids as electrolytes for supercapacitors by molecular dynamics simulations

Texto completo
Autor(es):
Sampaio, Abner Massari [1] ; Lemos Pereira, Guilherme Ferreira [1] ; Salanne, Mathieu [2, 3] ; Amaral Siqueira, Leonardo Jose [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Fed Sao Paulo, Inst Ciencias Ambientais Quim & Farmaceut, Dept Quim, Lab Mat Hibridos, Rua Sao Nicolau 210, BR-09913030 Diadema, SP - Brazil
[2] Sorbonne Univ, Physicochim Electrolytes & Nanosyst Interfaciaux, CNRS, F-75005 Paris - France
[3] FR CNRS 3459, Reseau Stockage Electrochim Energie RS2E, F-80039 Amiens - France
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Electrochimica Acta; v. 364, DEC 20 2020.
Citações Web of Science: 0
Resumo

Ionic liquids (ILs) are generally considered good candidates for supercapacitors electrolytes due to their wide electrochemical windows (EW), which results in high energy densities. Yet they generally offer poor power delivery compared to the conventional organic electrolytes. Here we performed molecular dynamics simulations of slit porous electrode in contact with two ionic liquids with similar viscosities and ionic conductivities, but different electrochemical stability. They are formed by sulfonium and phosphonium cations sharing the same anion. The supercapacitor built with sulfonium-based IL can store up to 50 % more energy at high voltage (Delta Psi = 3.8 V) than the one involving the phosphonium-based IL. Contrarily to previous works with ILs, the improved performance in terms of energy density is accompanied with a faster charging. The properties are rationalized by comparing the structure of the liquids in the two systems. These results show that it is not always necessary to compromise the power delivery for enhanced energy density in ionic liquids-based supercapacitors. (C) 2020 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 17/11631-2 - CINE: desenvolvimento computacional de materiais utilizando simulações atomísticas, meso-escala, multi-física e inteligência artificial para aplicações energéticas
Beneficiário:Juarez Lopes Ferreira da Silva
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia
Processo FAPESP: 19/18125-0 - Estudo computacional de materiais com aplicação em armazenamento de energia
Beneficiário:Leonardo José Amaral de Siqueira
Modalidade de apoio: Auxílio à Pesquisa - Regular