Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques

Texto completo
Autor(es):
Valdivia, Nereida L. [1] ; Votto, Luiz F. M. [1] ; Gouesbet, Gerard [2] ; Wang, Jiajie [3] ; Ambrosio, Leonardo A. [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Elect & Comp Engn, Sao Carlos Sch Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP - Brazil
[2] Normandie Univ, CORIA UMR 6614, CNRS, Univ & INSA Rouen, Campus Univ Madrillet, F-76800 St Etienne Du Rouvray - France
[3] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Shaanxi - Peoples R China
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER; v. 256, NOV 2020.
Citações Web of Science: 1
Resumo

In the analysis of light scattering by small particles, the Generalized Lorenz-Mie Theory (GLMT) describes the incident beam with a set of Beam Shape Coefficients (BSCs) that can be calculated with three different approaches, viz., quadratures, finite series and localized approximations. Choosing between them may not be self-evident. A Bessel-Gauss beam (BGB) is a finite energy, physically realizable wave field resulting from the apodization of a Bessel beam by a Gaussian function. This paper provides a comparison between the aforementioned techniques for the evaluation of the BSCs of scalar BGBs with distinct axicon angles and confinement parameters, including field reconstructions. All three methods agree quite well in the paraxial regime, although as the axicon angle or the topological charge increases, differences in the BSCs for each method become more and more evident. (C) 2020 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 17/10445-0 - Feixes de luz não difrativos microestruturados para micromanipulação óptica
Beneficiário:Leonardo Andre Ambrosio
Modalidade de apoio: Auxílio à Pesquisa - Regular