Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Dynamic Controller Assignment in Software Defined Internet of Vehicles Through Multi-Agent Deep Reinforcement Learning

Texto completo
Autor(es):
Yuan, Tingting [1] ; Neto, Wilson da Rocha [2] ; Rothenberg, Christian Esteve [2] ; Obraczka, Katia [3] ; Barakat, Chadi [1] ; Turletti, Thierry [1]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Inria, Diana Project Team, F-06902 Sophia Antipolis - France
[2] Univ Estadual Campinas, Fac Elect & Comp Engn, BR-13086902 Campinas - Brazil
[3] Univ Calif Santa Cruz, Dept Comp Engn, Santa Cruz, CA 95064 - USA
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT; v. 18, n. 1, p. 585-596, MAR 2021.
Citações Web of Science: 6
Resumo

In this article, we introduce a novel dynamic controller assignment algorithm targeting connected vehicle services and applications, also known as Internet of Vehicles (IoV). The proposed approach considers a hierarchically distributed control plane, decoupled from the data plane, and uses vehicle location and control traffic load to perform controller assignment dynamically. We model the dynamic controller assignment problem as a multi-agent Markov game and solve it with cooperative multi-agent deep reinforcement learning. Simulation results using real-world vehicle mobility traces show that the proposed approach outperforms existing ones by reducing control delay as well as packet loss. (AU)

Processo FAPESP: 17/50361-0 - Distributed inteligent vehicular environment: enabling ITS through programmable networks
Beneficiário:Christian Rodolfo Esteve Rothenberg
Modalidade de apoio: Auxílio à Pesquisa - Regular