Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Stacked authorship attribution of digital texts

Texto completo
Autor(es):
Custodio, Jose Eleandro [1] ; Paraboni, Ivandre [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Av Arlindo Bettio 1000, Sao Paulo - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 176, AUG 15 2021.
Citações Web of Science: 0
Resumo

In computational authorship attribution (AA) ? the task of identifying the author of a given text based on a set of possible candidates ? existing differences across domains, languages or input settings may require using knowledge from multiple sources, ranging from surface character patterns to deeper semantics and others. Moreover, since increasing the model complexity may easily lead to overfitting, sources of this kind have to be selected judiciously according to each particular input. Based on these observations, this article introduces a novel approach to AA consisting of stacked classifiers built from multiple knowledge sources - words, characters, part-of-speech n-grams, syntactic dependencies, word embeddings and more - that are dynamically included in the AA model according to the relevant input. In doing so, we would like to show that a stacking approach not only outperforms previous work in the field, but also that dynamic model selection outperforms the use of any of the individual components alone. The current model - called DynAA - is evaluated in a number of AA scenarios covering multiple languages, domains and input sizes, and is shown to generally outperform a number of baseline alternatives, including convolutional neural networks, BERT and others. (AU)

Processo FAPESP: 16/14223-0 - Tratamento Computacional da Personalidade Humana para Aplicações de Processamento de Língua Natural
Beneficiário:Ivandre Paraboni
Modalidade de apoio: Auxílio à Pesquisa - Regular