Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Fed Sao Carlos, Dept Matemat, BR-13560905 Sao Carlos, SP - Brazil
[2] Univ Valencia, Dept Matemat, Campus Burjassot, Burjassot 46100 - Spain
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | PUBLICACIONS MATEMATIQUES; v. 65, n. 1, p. 389-407, 2021. |
Citações Web of Science: | 0 |
Resumo | |
We use normal sections to relate the curvature locus of regular (resp. singular corank 1) 3-manifolds in R-6 (resp. R-5) with regular (resp. singular corank 1) surfaces in R-5 (resp. R-4). For example, we show how to generate a Roman surface by a family of ellipses different to Steiner's way. We also study the relations between the regular and singular cases through projections. We show that there is a commutative diagram of projections and normal sections which relates the curvature loci of the different types of manifolds, and therefore, that the second order geometry of all of them is related. In particular, we define asymptotic directions for singular corank 1 3-manifolds in R-5 and relate them to asymptotic directions of regular 3-manifolds in R-6 and singular corank 1 surfaces in R-4. (AU) | |
Processo FAPESP: | 19/00194-6 - Geometria de superfícies singulares em $\mathbb{R}^{4}$ |
Beneficiário: | Pedro Benedini Riul |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |