Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Bioelectrical pattern discrimination of Miconia plants by spectral analysis and machine learning

Texto completo
Autor(es):
Gimenez, Valeria M. M. [1] ; Pauletti, Patricia M. [1] ; Silva, Ana Carolina Sousa [2] ; Costa, Ernane Jose Xavier [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Franca, Av Dr Armando Sales de Oliveira 01 Franca, BR-14404600 Sao Paulo - Brazil
[2] Univ Sao Paulo, Fac Zootecn & Engn Alimentos, Dept Ciencias Basicas ZAB, Av Duque Caxias Norte 225 Pirassununga, BR-13635900 Pirassununga, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY; v. 33, n. 4 JUL 2021.
Citações Web of Science: 0
Resumo

We have carried out an in loco investigation into the species Miconia albicans (SW.) Triana and Miconia chamissois Naudin (Melastomataceae), distributed in different phytophysiognomies of three Cerrado fragments in the State of Sao Paulo, Brazil. We characterized their oscillatory bioelectrical signals and asked whether these signals show distinct spectral density. The experiments provided a bank of bioelectrical amplitude samples, which were analyzed in the time and frequency domain. On the basis of the power spectral density (PSD) and machine learning techniques, analyses in the frequency domain suggested that each of these species has a unique biological pattern. Comparison between their oscillatory behavior showed bioelectrical features, and both species displayed a bioelectrical pattern, while environmental factors also influence this pattern. From the point of view of experimental Botany, new questions and concepts could be formulated to advance the understanding of the interactions between the communicative nature of plants and the environment. The results of this on-site technique represent a new methodology to acquire non-invasive information that might be associated with physiological, chemical, and ecological responses of plants. (AU)

Processo FAPESP: 16/10313-4 - Estudo fitoquímico e avaliação das atividades esquistossomicida, citotóxica e leishmanicida de plantas do cerrado
Beneficiário:Patricia Mendonça Pauletti
Modalidade de apoio: Auxílio à Pesquisa - Programa BIOTA - Regular