Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

VLTI-MATISSE chromatic aperture-synthesis imaging of eta Carinae's stellar wind across the Br alpha line Periastron passage observations in February 2020

Texto completo
Autor(es):
Mostrar menos -
Weigelt, G. [1] ; Hofmann, K. -H. [1] ; Schertl, D. [1] ; Lopez, B. [2] ; Petrov, R. G. [2] ; Lagarde, S. [2] ; Berio, Ph. [2] ; Jaffe, W. [3] ; Henning, Th. [4] ; Millour, F. [2] ; Meilland, A. [2] ; Allouche, F. [2] ; Robbe-Dubois, S. [2] ; Matter, A. [2] ; Cruzalebes, P. [2] ; Hillier, D. J. [5, 6] ; Russell, C. M. P. [7] ; Madura, T. [8] ; Gull, T. R. [9] ; Corcoran, M. F. [7, 10] ; Damineli, A. [11] ; Moffat, A. F. J. [12] ; Morris, P. W. [13] ; Richardson, N. D. [14] ; Paladini, C. [15] ; Schoeller, M. [16] ; Merand, A. [16] ; Glindemann, A. [16] ; Beckmann, U. [1] ; Heininger, M. [1] ; Bettonvil, F. ; Zins, G. ; Woillez, J. [16] ; Bristow, P. [16] ; Sanchez-Bermudez, J. [17] ; Ohnaka, K. [18] ; Kraus, S. [19] ; Mehner, A. ; Wittkowski, M. ; Hummel, C. A. ; Stee, P. [2] ; Vakili, F. [2] ; Hartman, H. [20] ; Navarete, F. ; Hamaguchi, K. [21] ; Espinoza-Galeas, D. A. ; Stevens, I. R. [22] ; van Boekel, R. ; Wolf, S. [23] ; Hogerheijde, M. R. [3, 24] ; Dominik, C. [24] ; Augereau, J. -C. [25] ; Pantin, E. [26] ; Waters, L. B. F. M. [27, 28] ; Meisenheimer, K. ; Varga, J. [3, 29] ; Klarmann, L. ; Gamez Rosas, V. [3] ; Burtscher, L. [3] ; Leftley, J. [2] ; Isbell, J. W. [4] ; Hocde, V. [2] ; Yoffe, G. [4] ; Kokoulina, E. [2] ; Hron, J. [28] ; Groh, J. [30] ; Kreplin, A. ; Rivinius, Th. ; de Wit, W. -J. ; Danchi, W. -C. [2] ; Domiciano de Souza, A. [2] ; Drevon, J. [2] ; Labadie, L. [31, 32, 33] ; Connot, C. [1] ; Nussbaum, E. [1] ; Lehmitz, M. ; Antonelli, P. [2] ; Graser, U. [4] ; Leinert, C. [4]
Número total de Autores: 79
Afiliação do(s) autor(es):
Mostrar menos -
[1] Max Planck Inst Radio Astron, Hugel 69, D-53121 Bonn - Germany
[2] Univ Cote dAzur, CNRS, Observatoire Cote dAzur, Lab Lagrange, Blvd lObservatoire, CS 34229, F-06304 Nice 4 - France
[3] Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden - Netherlands
[4] Max Planck Inst Astron, Konigstuhl 17, Heidelberg - Germany
[5] Univ Pittsburgh, Cosmol Ctr PITT PACC, 3941 OHara St, Pittsburgh, PA 15260 - USA
[6] Univ Pittsburgh, Dept Phys & Astron & Pittsburgh Particle Phys Ast, 3941 OHara St, Pittsburgh, PA 15260 - USA
[7] Cathol Univ Amer, Inst Astrophys & Computat Sci, 620 Michigan Ave., N.E, Washington, DC 20064 - USA
[8] San Jose State Univ, Dept Phys & Astron, 1 Washington Sq, San Jose, CA 95192 - USA
[9] NASA GSFC, Astrophys Sci Div, Greenbelt, MD 20771 - USA
[10] NASA GSFC, CRESST II & Xray Astrophys Lab, Greenbelt, MD 20771 - USA
[11] Univ Sao Paulo, Inst Astron Geofis Ciencias Atmosfer, Rua Matao 1226, Cidade Univ, BR-05508090 Sao Paulo, SP - Brazil
[12] Univ Montreal, Ctr Rech Astrophys Quebec CRAQ, CP 6128 Succ. A., Centre Ville, Montreal, PQ H3C 3J7 - Canada
[13] Univ Montreal, Dept Phys, CP 6128 Succ. A., Centre Ville, Montreal, PQ H3C 3J7 - Canada
[14] IPAC, Calif Inst Technol, M C 100-22, Pasadena, CA 91125 - USA
[15] Embry Riddle Aeronaut Univ, Dept Phys & Astron, 3700 Willow Creek Rd, Prescott, AZ 86301 - USA
[16] European Southern Observ, 19001 Santiago 19 - Chile
[17] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching - Germany
[18] Univ Nacl Autonoma Mexico, Inst Astron, Apdo. Postal 70264, Mexico City, DF 04510 - Mexico
[19] Univ Andres Bello, Fac Ciencias Exactas, Dept Ciencias Fis, Fernandez Concha 700, Santiago - Chile
[20] Univ Exeter, Sch Phys, Astrophys Grp, Stocker Rd, Exeter EX4 4QL, Devon - England
[21] Malmo Univ, Dept Mat Sci & Appl Math, S-20506 Malmo - Sweden
[22] Univ Maryland, Dept Phys, Baltimore Cty, 1000 Hilltop Circle, Baltimore, MD 21250 - USA
[23] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands - England
[24] Univ Kiel, Inst Theoret Phys & Astrophys, Leibnizstrasse 15, D-24118 Kiel - Germany
[25] Univ Amsterdam, Astron Inst Anton Pannekoek, Sci Pk 904, NL-1090 GE Amsterdam - Netherlands
[26] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble - France
[27] Univ Paris Diderot, Univ Paris Saclay, CNRS, CEA, AIM, Sorbonne Paris Cite, F-91191 Gif Sur Yvette - France
[28] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Box 9010, NL-MC626500 Nijmegen - Netherlands
[29] Univ Vienna, Dept Astrophys, Turkenschanzstrasse 17, A-1180 Vienna - Austria
[30] SRON Netherlands Inst Space Res, Sorbonnelaan 2, NL-3584 CA Utrecht - Netherlands
[31] Univ Dublin, Trin Coll Dublin, Dublin - Ireland
[32] Res Ctr Astron & Earth Sci, Konkoly Observ, Konkoly Thege Miklosut 15-17, H-1121 Budapest - Hungary
[33] Univ Cologne, Physikal Inst 1, Zulpicher Str. 77, D-50937 Cologne - Germany
Número total de Afiliações: 33
Tipo de documento: Artigo Científico
Fonte: Astronomy & Astrophysics; v. 652, AUG 25 2021.
Citações Web of Science: 0
Resumo

Context. Eta Carinae is a highly eccentric, massive binary system (semimajor axis similar to 15.5 au) with powerful stellar winds and a phase-dependent wind-wind collision (WWC) zone. The primary star, eta Car A, is a luminous blue variable (LBV); the secondary, eta Car B, is a Wolf-Rayet or O star with a faster but less dense wind. Aperture-synthesis imaging allows us to study the mass loss from the enigmatic LBV eta Car. Understanding LBVs is a crucial step toward improving our knowledge about massive stars and their evolution. Aims. Our aim is to study the intensity distribution and kinematics of eta Car's WWC zone. Methods. Using the VLTI-MATISSE mid-infrared interferometry instrument, we perform Br alpha imaging of eta Car's distorted wind. Results. We present the first VLTI-MATISSE aperture-synthesis images of eta Car A's stellar windin several spectral channels distributed across the Br alpha 4.052 mu m line (spectral resolving power R similar to 960). Our observations were performed close to periastron passage in February 2020 (orbital phase similar to 14.0022). The reconstructed iso-velocity images show the dependence of the primary stellar wind on wavelength or line-of-sight (LOS) velocity with a spatial resolution of 6 mas (similar to 14 au). The radius of the faintest outer wind regions is similar to 26 mas (similar to 60 au). At several negative LOS velocities, the primary stellar wind is less extended to the northwest than in other directions. This asymmetry is most likely caused by the WWC. Therefore, we see both the velocity field of the undisturbed primary wind and the WWC cavity. In continuum spectral channels, the primary star wind is more compact than in line channels. A fit of the observed continuum visibilities with the visibilities of a stellar wind CMFGEN model (CMFGEN is an atmosphere code developed to model the spectra of a variety of objects) provides a full width at half maximum fit diameter of the primary stellar wind of 2.84 +/- 0.06 mas (6.54 +/- 0.14 au). We comparethe derived intensity distributions with the CMFGEN stellar wind model and hydrodynamic WWC models. (AU)

Processo FAPESP: 19/02029-2 - Eta Carinae: uma passagem periástrica perfeita em 2020
Beneficiário:Augusto Damineli Neto
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 17/18191-8 - Formação de estrelas de alta massa: a massa do objeto central e a física da acreção
Beneficiário:Felipe Donizeti Teston Navarete
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado