Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Widening wave band gaps of periodic plates via shape optimization using spatial Fourier coefficients

Texto completo
Autor(es):
Dal Poggetto, Vinicius Fonseca [1] ; de Franca Arruda, Jose Roberto [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Sch Mech Engn, Dept Computat Mech, UNICAMP, Rua Mendeleyev 200, Cidade Univ Zeferino Vaz, BR-13083860 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: MECHANICAL SYSTEMS AND SIGNAL PROCESSING; v. 147, JAN 15 2021.
Citações Web of Science: 6
Resumo

Periodic media have been shown to exhibit wave attenuation in frequency ranges called band gaps. The challenge is designing feasible periodic structures that present total band gaps in the low-frequency range. Plate structures are two-dimensional media that can benefit from the application of these concepts. They can be modeled using either Kirchhoff's or Mindlin's plate theories. Since the periodic properties of plates (geometry and material properties) can be described by a two-dimensional spatial Fourier series, it should be possible to optimize its configuration using the series coefficients. The Fourier series representation is commonly used to compute the dispersion diagrams via the plane wave expansion (PWE) method. In this work, the Fourier series coefficients that describe the spatial distribution of the plate properties are used as optimization variables to obtain solutions that maximize an objective function capable of yielding low-frequency band gaps. In particular, the spatial distribution of the plate thickness is described by a two-dimensional Fourier series. Its coefficients are optimized with constraints on the minimum and maximum values to achieve the widening of low-frequency band gaps. Results show feasible solutions for several values of minimum and maximum thicknesses using Kirchhoff's and Mindlin's plate formulations. (C) 2020 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 18/15894-0 - Projeto e otimização de estruturas periódicas para aprimoramento de desempenho vibroacústico
Beneficiário:Carlos de Marqui Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático