Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Epanechnikov kernel for PDF estimation applied to equalization and blind source separation

Texto completo
Autor(es):
Moraes, Caroline P. A. [1] ; Fantinato, Denis G. [1] ; Neves, Aline [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Fed Univ ABC, Av Estados 5001, Santo Andre, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Signal Processing; v. 189, DEC 2021.
Citações Web of Science: 0
Resumo

Information Theoretic Learning (ITL) methods have been applied in a variety of applications as dynamic modeling, equalization and blind source separation. Usually, such methods involve the estimation of the probability density function (pdf) of the signals, what can be achieved through the use of kernel density estimators (KDE). In literature, the Gaussian kernel is the most largely used function in the estimator. However, using a second-order approximation, it is possible to show that the Epanechnikov kernel leads to an improved pdf estimation when compared to that using the Gaussian kernel. Hence, in this work, we explore the use of the Epanechnikov kernel in KDE applied to equalization and blind source separation problems. Following an ITL perspective, we develop methods based on the Epanechnikov kernel for both problems, showing how the proposed approach may improve performance when compared to methods in the literature which use the Gaussian kernel. (c) 2021 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 18/17678-3 - Algoritmos Baseados em ITL Com Kernel Não-Gaussiano
Beneficiário:Aline de Oliveira Neves Panazio
Modalidade de apoio: Auxílio à Pesquisa - Regular