Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Identification of the Choquet integral parameters in the interaction index domain by means of sparse modeling

Texto completo
Autor(es):
de Oliveira, Henrique Evangelista [1] ; Duarte, Leonardo Tomazeli [2] ; Travassos Romano, Joao Marcos [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Campinas UNICAMP, Sch Elect & Comp Engn FEEC, Campinas, SP - Brazil
[2] Univ Campinas UNICAMP, Sch Appl Sci FCA, Limeira - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 187, JAN 2022.
Citações Web of Science: 0
Resumo

The Choquet integral has been used as an aggregation operator in the field of multiple criteria decision aiding. Due to its nonlinear nature, the Choquet integral can model interactions between different criteria, such as synergy and redundancy. However, the identification of the Choquet integral parameters is a challenging problem due to its ill-posed nature, which may lead to non-unique solutions. In recent works, this problem has been addressed by considering regularization terms based on sparsity. In this work, this approach is also considered. However, differently from previous studies, in which the Choquet integral is parametrized by means of a fuzzy measure, we propose a novel identification method which exploits sparsity in a transformed domain known as interaction index representation. We provide a set of numerical experiments to assess the proposed method. As a second contribution of the paper, we conduct an identifiability analysis, in which the aim is to search for conditions that ensure that the identification process leads to unique solutions. This analysis is supported by a set of numerical experiments carried out in different scenarios. (AU)

Processo FAPESP: 20/01089-9 - Separação não-supervisionada de sinais: um estudo sobre a aplicabilidade de redes generativas adversárias e sobre modelos não-lineares baseados na Integral de Choquet
Beneficiário:Leonardo Tomazeli Duarte
Modalidade de apoio: Auxílio à Pesquisa - Regular