Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Development of New Staining Procedures for Diagnosing Cryptosporidium spp. in Fecal Samples by Computerized Image Analysis

Texto completo
Autor(es):
Mostrar menos -
Nery Loiola, Saulo Hudson [1] ; Galvao, Felipe Lemes [2] ; dos Santos, Bianca Martins [1] ; Rosa, Stefany Laryssa [1] ; Soares, Felipe Augusto [1] ; Inacio, Sandra Valeria [3] ; Nagase Suzuki, Celso Tetsuo [2] ; Sabadini, Edvaldo [4] ; Saraiva Bresciani, Katia Denise [3] ; Falcao, Alexandre Xavier [2] ; Gomes, Jancarlo Ferreira [1, 2]
Número total de Autores: 11
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Sch Med Sci, 126 Tessalia Vieira de Camargo St, BR-13083887 Campinas, SP - Brazil
[2] Univ Estadual Campinas, Inst Comp, 573, IC-3, 5 Saturnino de Brito St, Room 364, BR-13083852 Campinas, SP - Brazil
[3] Sao Paulo State Univ, UNESP, Sch Vet Med, 793 Clovis Pestana St, BR-16050680 Aracatuba, SP - Brazil
[4] Univ Estadual Campinas, Inst Chem, 126 Josue de Castro St, BR-13083861 Campinas, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Microscopy and Microanalysis; v. 27, n. 6, p. 1518-1528, DEC 2021.
Citações Web of Science: 0
Resumo

Interpretation errors may still represent a limiting factor for diagnosing Cryptosporidium spp. oocysts with the conventional staining techniques. Humans and machines can interact to solve this problem. We developed a new temporary staining protocol associated with a computer program for the diagnosis of Cryptosporidium spp. oocysts in fecal samples. We established 62 different temporary staining conditions by studying 20 experimental protocols. Cryptosporidium spp. oocysts were concentrated using the Three Fecal Test (TF-Test (R)) technique and confirmed by the Kinyoun method. Next, we built a bank with 299 images containing oocysts. We used segmentation in superpixels to cluster the patches in the images; then, we filtered the objects based on their typical size. Finally, we applied a convolutional neural network as a classifier. The trichrome modified by Melvin and Brooke, at a concentration use of 25%, was the most efficient dye for use in the computerized diagnosis. The algorithms of this new program showed a positive predictive value of 81.3 and 94.1% sensitivity for the detection of Cryptosporidium spp. oocysts. With the combination of the chosen staining protocol and the precision of the computational algorithm, we improved the Ova and Parasite exam (O\&P) by contributing in advance toward the automated diagnosis. (AU)

Processo FAPESP: 18/21204-7 - Diagnóstico do protozoário Cryptosporidium spp., por meio de análise automatizada de imagens
Beneficiário:Saulo Hudson Nery Loiola
Modalidade de apoio: Bolsas no Brasil - Mestrado