Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

arnessing UAVs for Fair 5G Bandwidth Allocation in Vehicular Communication via Deep Reinforcement Learnin

Texto completo
Autor(es):
Yuan, Tingting [1] ; Rothenberg, Christian Esteve [2] ; Obraczka, Katia [3] ; Barakat, Chadi [4] ; Turletti, Thierry [4]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Georg August Univ Gottingen, Comp Networks Grp, D-37075 Gottingen - Germany
[2] Univ Estadual Campinas, FEEC, BR-13086902 Campinas - Brazil
[3] Univ Calif Santa Cruz, Dept Comp Engn, Santa Cruz, CA 95064 - USA
[4] Univ Cote dAzur, INRIA, F-06902 Sophia Antipolis - France
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT; v. 18, n. 4, p. 4063-4074, DEC 2021.
Citações Web of Science: 2
Resumo

Terrestrial infrastructure-based wireless networks do not always guarantee their resources will be shared uniformly by nodes in vehicular networks. This is due mainly to the uneven and dynamic geographical distribution of vehicles and path loss effects. In this paper, we leverage multiple fifth-generation (5G) unmanned aerial vehicles (UAVs) to enhance fairness in network resource allocation among vehicles by positioning UAVs on-demand as ``flying communication infrastructure{''}. We propose a deep reinforcement learning (DRL) approach to determine UAVs' position to improve network resource allocation fairness and efficiency while considering the UAVs' flying range, communication range, and energy constraints. We use a parametric fairness function to attain a number of resource allocation objectives ranging from maximizing the total throughput of vehicles, maximizing minimum throughput, and achieving proportional bandwidth allocation. Simulation results show that the proposed DRL approach to UAV positioning can improve network resource allocation according to the targeted fairness objective. (AU)

Processo FAPESP: 17/50361-0 - Distributed inteligent vehicular environment: enabling ITS through programmable networks
Beneficiário:Christian Rodolfo Esteve Rothenberg
Modalidade de apoio: Auxílio à Pesquisa - Regular