Busca avançada
Ano de início
Entree
Conteúdo relacionado
(Referência obtida automaticamente do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

CLASSIFICATION OF BANANA RIPENING STAGES BY ARTIFICIAL NEURAL NETWORKS AS A FUNCTION OF PLANT PHYSICAL, PHYSICOCHEMICAL, AND BIOCHEMICAL PARAMETERS

Texto completo
Autor(es):
Alfredo Bonini Neto [1] ; Angela V. de Souza [2] ; Carolina dos S. B. Bonini [3] ; Jéssica M. de Mello [4] ; Adonis Moreira [5]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] São Paulo State University. School of Sciences and Engineering - Brasil
[2] São Paulo State University. School of Sciences and Engineering - Brasil
[3] São Paulo State University. College of Agricultural and Technological Sciences - Brasil
[4] São Paulo State University. School of Sciences and Engineering - Brasil
[5] Embrapa Soja. Department of Soil Science - Brasil
Número total de Afiliações: 5
Tipo de documento: Artigo Científico
Fonte: Engenharia Agrícola; v. 42, n. 3 2022-06-06.
Resumo

ABSTRACT Brazil is currently the 4th world’s largest banana producer, producing around 7 million tons. In this scenario, several studies have been developed with a large amount of data, such as climatic, morphological, and nutritional data, in an attempt to improve these numbers even further. This study aims to classify banana ripening stages by artificial neural networks (ANN) as a function of plant physical, physicochemical, and biochemical parameters. The used ANN consisted of a three-layer feedforward backpropagation network, with eight neurons in the input layer (physical, physicochemical, and biochemical parameters), ten neurons in the intermediate layer, and two neurons in the output layer (classification of banana ripening stages). The results showed three configurations. ANN presented an excellent result for the training phase, with 100% accuracy in the sample classification for the three configurations. The validation and testing phases, that is, the classification of samples that were not part of the training, showed 91.6% and 94.4% accuracy in the first and second configurations, respectively, and 89.5% accuracy in the third configuration. (AU)

Processo FAPESP: 20/14166-1 - Modelagem de redes neurais artificiais aplicadas à predição da maturação a partir de parâmetros de qualidade de bananas
Beneficiário:Angela Vacaro de Souza
Modalidade de apoio: Auxílio à Pesquisa - Regular