Busca avançada
Ano de início
Entree


High-throughput inverse design and Bayesian optimization of functionalities: spin splitting in two-dimensional compounds

Texto completo
Autor(es):
Nascimento, Gabriel M. ; Ogoshi, Elton ; Fazzio, Adalberto ; Acosta, Carlos Mera ; Dalpian, Gustavo M.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: SCIENTIFIC DATA; v. 9, n. 1, p. 18-pg., 2022-04-29.
Resumo

The development of spintronic devices demands the existence of materials with some kind of spin splitting (SS). In this Data Descriptor, we build a database of ab initio calculated SS in 2D materials. More than that, we propose a workflow for materials design integrating an inverse design approach and a Bayesian inference optimization. We use the prediction of SS prototypes for spintronic applications as an illustrative example of the proposed workflow. The prediction process starts with the establishment of the design principles (the physical mechanism behind the target properties), that are used as filters for materials screening, and followed by density functional theory (DFT) calculations. Applying this process to the C2DB database, we identify and classify 358 2D materials according to SS type at the valence and/or conduction bands. The Bayesian optimization captures trends that are used for the rationalized design of 2D materials with the ideal conditions of band gap and SS for potential spintronics applications. Our workflow can be applied to any other material property. (AU)

Processo FAPESP: 17/02317-2 - Interfaces em materiais: propriedades eletrônicas, magnéticas, estruturais e de transporte
Beneficiário:Adalberto Fazzio
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 19/04176-2 - Na busca de novos materiais bidimensionais: propriedades termodinâmicas
Beneficiário:Gabriel de Miranda Nascimento
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica
Processo FAPESP: 18/11856-7 - Efeitos induzidos por interfaces em materiais quânticos
Beneficiário:Carlos Augusto Mera Acosta
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 18/11641-0 - Métodos de machine learning aplicados a interfaces entre materiais semicondutores
Beneficiário:Elton Ogoshi de Melo
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto