Busca avançada
Ano de início
Entree
Conteúdo relacionado


NONLOCAL HENON EQUATION WITH NONLINEARITIES INVOLVING SOBOLEV CRITICAL AND SUPERCRITICAL GROWTH

Autor(es):
Barboza, Eudes M. ; Miyagaki, Olimpio H. ; Pereira, Fabio R. ; Santana, Claudia R.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: Advances in Differential Equations; v. 27, n. 7-8, p. 29-pg., 2022-07-01.
Resumo

In this paper, we study the following class of fractional Henon problems involving exponents critical or supercritical {(-Delta)(s) u = lambda vertical bar x vertical bar(mu) u + vertical bar x vertical bar(alpha) vertical bar u vertical bar((p alpha,s)*(+epsilon)-1)u in Omega, u = 0 in R-N / Omega, where p(alpha,s)* = N+2 alpha+2s/N-2s is the critical exponent for a nonlinearity with Henon weight in nonlocal context, epsilon >= 0, Omega is either a ball or an annulus in R-N, s is an element of (0, 1) and mu, alpha > -2s. We used the Emden-Fowler transformation to make the one-dimensional reduction of problems and under appropriate hypotheses on the constant lambda, we prove the existence of at least one non-trivial radial solution for these problems using the concentration compactness principle or Linking Theorem. (AU)

Processo FAPESP: 19/24901-3 - Problema quase linear não local crítica: existência, multiplicidade e propriedades das soluções
Beneficiário:Olimpio Hiroshi Miyagaki
Modalidade de apoio: Auxílio à Pesquisa - Regular