Busca avançada
Ano de início
Entree


Autonomously Reusing Knowledge in Multiagent Reinforcement Learning

Autor(es):
Da Silva, Felipe Leno ; Taylor, Matthew E. ; Reali Costa, Anna Helena ; Lang, J
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE; v. N/A, p. 7-pg., 2018-01-01.
Resumo

Autonomous agents are increasingly required to solve complex tasks; hard-coding behaviors has become infeasible. Hence, agents must learn how to solve tasks via interactions with the environment. In many cases, knowledge reuse will be a core technology to keep training times reasonable, and for that, agents must be able to autonomously and consistently reuse knowledge from multiple sources, including both their own previous internal knowledge and from other agents. In this paper, we provide a literature review of methods for knowledge reuse in Multiagent Reinforcement Learning. We define an important challenge problem for the AI community, survey the existent methods, and discuss how they can all contribute to this challenging problem. Moreover, we highlight gaps in the current literature, motivating "low-hanging fruit" for those interested in the area. Our ambition is that this paper will encourage the community to work on this difficult and relevant research challenge. (AU)

Processo FAPESP: 16/21047-3 - ALIS: Aprendizado Autônomo em Sistemas Inteligentes
Beneficiário:Anna Helena Reali Costa
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/16310-4 - Transferência de Conhecimento no Aprendizado por Reforço em Sistemas Multiagentes
Beneficiário:Felipe Leno da Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 18/00344-5 - Reusando soluções de tarefas prévias em aprendizado por reforço multiagente
Beneficiário:Felipe Leno da Silva
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado