Busca avançada
Ano de início
Entree


C-Rank: A Concept Linking Approach to Unsupervised Keyphrase Extraction

Texto completo
Autor(es):
Lucca Tosi, Mauro Dalle ; dos Reis, Julio Cesar ; Garoufallou, E ; Fallucchi, F ; DeLuca, EW
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: METADATA AND SEMANTIC RESEARCH, MTSR 2019; v. 1057, p. 12-pg., 2019-01-01.
Resumo

Keyphrase extraction is the task of identifying a set of phrases that best represent a natural language document. It is a fundamental and challenging task that assists publishers to index and recommend relevant documents to readers. In this article, we introduce C-Rank, a novel unsupervised approach to automatically extract keyphrases from single documents by using concept linking. Our method explores Babelfy to identify candidate keyphrases, which are weighted based on heuristics and their centrality inside a co-occurrence graph where keyphrases appear as vertices. It improves the results obtained by graph-based techniques without training nor background data inserted by users. Evaluations are performed on SemEval and INSPEC datasets, producing competitive results with state-of-the-art tools. Furthermore, C-Rank generates intermediate structures with semantically annotated data that can be used to analyze larger textual compendiums, which might improve domain understatement and enrich textual representation methods. (AU)

Processo FAPESP: 17/02325-5 - EvOLoD: evolução de dados interconectados na Web Semântica
Beneficiário:Julio Cesar dos Reis
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores
Processo FAPESP: 13/08293-7 - CECC - Centro de Engenharia e Ciências Computacionais
Beneficiário:Munir Salomao Skaf
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs