Busca avançada
Ano de início
Entree


CORRECTING MISALIGNED RURAL BUILDING ANNOTATIONS IN OPEN STREET MAP USING CONVOLUTIONAL NEURAL NETWORKS EVIDENCE

Texto completo
Autor(es):
Vargas-Munoz, John E. ; Marcos, Diego ; Lobry, Sylvain ; dos Santos, Jefersson A. ; Falcao, Alexandre X. ; Tuia, Devis ; IEEE
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM; v. N/A, p. 4-pg., 2018-01-01.
Resumo

Mapping rural buildings in developing countries is crucial to monitor and plan in those vulnerable areas. Despite the existence of some rural building annotations in OpenStreetMap (OSM), those are of insufficient quantity and quality to train models able to map large areas accurately. In particular, these annotations are very often misaligned with respect to the buildings that are present in updated aerial imagery. We propose a Markov Random Field (MRF) method to correct misaligned rural building annotations. To do so, our method uses i) the correlation between candidate aligned OSM annotations and buildings roughly detected on aerial images and ii) the local consistency of the alignment vectors. (AU)

Processo FAPESP: 16/14760-5 - Anotação Interativa de Imagens de Sensoriamento Remoto
Beneficiário:John Edgar Vargas Muñoz
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/10086-0 - Detecção e delineamento de prédios rurais utilizando imagens de sensoriamento remoto
Beneficiário:John Edgar Vargas Muñoz
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado