Busca avançada
Ano de início
Entree


Precipitates Segmentation from Scanning Electron Microscope Images through Machine Learning Techniques

Texto completo
Autor(es):
Mostrar menos -
Papa, Joao P. ; Pereira, Clayton R. ; de Albuquerque, Victor H. C. ; Silva, Cleiton C. ; Falcao, Alexandre X. ; Tavares, Jaao Manuel R. S. ; Aggarwal, JK ; Barneva, RP ; Brimkov, VE ; Koroutchev, KN ; Korutcheva, ER
Número total de Autores: 11
Tipo de documento: Artigo Científico
Fonte: COMBINATORIAL IMAGE ANALYSIS; v. 6636, p. 13-pg., 2011-01-01.
Resumo

The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. (AU)

Processo FAPESP: 09/16206-1 - Novas tendências em reconhecimento de padrões baseado em floresta de caminhos ótimos
Beneficiário:João Paulo Papa
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores
Processo FAPESP: 10/02045-3 - Detecção de Intrusões Baseada em Floresta de Caminhos Ótimos
Beneficiário:Clayton Reginaldo Pereira
Modalidade de apoio: Bolsas no Brasil - Mestrado