Busca avançada
Ano de início
Entree


kappa-Entropy Based Restricted Boltzmann Machines

Texto completo
Autor(es):
Passos, Leandro Aparecido ; Santana, Marcos Cleison ; Moreira, Thierry ; Papa, Joao Paulo ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN); v. N/A, p. 8-pg., 2019-01-01.
Resumo

Restricted Boltzmann Machines achieved notorious popularity in the scientific community in the last decade due to outstanding results in a wide range of applications and also for providing the required mechanisms to build successful deep learning models, i.e., Deep Belief Networks and Deep Boltzmann Machines. However, their main bottleneck is related to the learning step, which is usually time-consuming. In this paper, we introduce a Sigmoid-like family of functions based on the Kaniadakis entropy formulation in the context of the RBM learning procedure. Experiments concerning binary image reconstruction are conducted in four public datasets to evaluate the robustness of the proposed approach. The results suggest that such a family of functions is suitable to increase the convergence rate when compared to standard functions employed by the research community. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 16/06441-7 - Recuperação de informação semântica em grandes bases de vídeos
Beneficiário:Jurandy Gomes de Almeida Junior
Modalidade de apoio: Auxílio à Pesquisa - Regular