Busca avançada
Ano de início
Entree


Elastic Time Series Motifs and Discords

Texto completo
Autor(es):
Silva, Diego F. ; Batista, Gustavo E. A. P. A. ; Wani, MA ; Kantardzic, M ; Sayedmouchaweh, M ; Gama, J ; Lughofer, E
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA); v. N/A, p. 6-pg., 2018-01-01.
Resumo

The recent proposal of the Matrix Profile (MP) has brought the attention of the time series community to the usefulness and versatility of the similarity joins. This primitive has numerous applications including the discovery of time series motifs and discords. However, the original MP algorithm has two prominent limitations: the algorithm only works for Euclidean distance (ED) and it is sensitive to the subsequences length. Is this work, we extend the MP algorithm to overcome both limitations. We use a recently proposed variant of Dynamic Time Warping (DTW), the Prefix and Suffix Invariant DTW (psi-DTW) distance. The psi-DTW allows invariance to warp and spurious endpoints caused by segmenting subsequences and has a sideeffect of supporting the match of subsequences with different lengths. Besides, we propose a suite of simple methods to speed up the MP calculation, making it more than one order of magnitude faster than a straightforward implementation and providing an anytime feature. We show that using psi-DTW avoids false positives and false dismissals commonly observed by applying ED, improving the time series motifs and discords discovery in several application domains. (AU)

Processo FAPESP: 16/04986-6 - Armadilhas e sensores inteligentes: uma abordagem inovadora para controle de insetos peste e vetores de doenças
Beneficiário:Gustavo Enrique de Almeida Prado Alves Batista
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Regular
Processo FAPESP: 13/26151-5 - Análise de séries temporais por similaridade em larga escala
Beneficiário:Diego Furtado Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 17/24340-6 - Mineração de Dados para Análise Individual e de Equipe em Esportes Coletivos
Beneficiário:Diego Furtado Silva
Modalidade de apoio: Auxílio à Pesquisa - Regular