Busca avançada
Ano de início
Entree


SMAA-Choquet-FlowSort: A novel user-preference-driven Choquet classifier applied to supplier evaluation

Texto completo
Autor(es):
Pelissari, Renata ; Duarte, Leonardo Tomazeli
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 207, p. 15-pg., 2022-07-08.
Resumo

The Choquet integral has been used as an aggregation operator to deal with interacting criteria in different types of problems. For ordinal classification problems, the majority of Choquet integral-based models proposed in the literature are built upon a supervised machine learning perspective, where a training data set is considered. Despite the effectiveness of these classification algorithms, their training-data-dependency may be considered a drawback in some decision-making problems. Our goal is then to propose a new multiple criteria Choquet classifier to conduct sorting based on user preference information. The classifier is built inside the FlowSort framework and, as such, aggregates intensity of preferences with respect to pairs of criteria instead of directly aggregating the criteria evaluations. This characteristic allows criteria and limiting profiles to be assessed by heterogeneous scales. In addition, we apply the Stochastic Multi-criteria Acceptability Analysis to the proposed classifier in order to elicit the Choquet capacities, model uncertain input data and analyze robustness of the results. The proposed classifier is applied to a real decision problem regarding the evaluation of pharmaceutical suppliers. (AU)

Processo FAPESP: 20/01089-9 - Separação não-supervisionada de sinais: um estudo sobre a aplicabilidade de redes generativas adversárias e sobre modelos não-lineares baseados na Integral de Choquet
Beneficiário:Leonardo Tomazeli Duarte
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/23447-4 - Aprendizado de preferências em decisão multicritério para problemas de classificação: novos métodos e aplicações
Beneficiário:Renata Pelissari Infante
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado