Busca avançada
Ano de início
Entree


DISTRIBUTED PARTICLE FILTERS FOR STATE TRACKING ON THE STIEFEL MANIFOLD USING TANGENT SPACE STATISTICS

Texto completo
Autor(es):
Bordin, Claudio J., Jr. ; de Figueredo, Caio G. ; Bruno, Marcelo G. S. ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP); v. N/A, p. 5-pg., 2022-01-01.
Resumo

This paper introduces a novel distributed diffusion algorithm for tracking the state of a dynamic system that evolves on the Stiefel manifold. To compress information exchanged between nodes, the algorithm builds a Gaussian parametric approximation to the particles that are previously projected onto the tangent space to the Stiefel manifold and mapped to real vectors. Observations from neighboring nodes are then assimilated for a general nonlinear observation model. Performance results are compared to those of competing linear diffusion Extended Kalman Filters and other particle filters. (AU)

Processo FAPESP: 18/26191-0 - Métodos Bayesianos para estimação distribuída em redes cooperativas
Beneficiário:Marcelo Gomes da Silva Bruno
Modalidade de apoio: Auxílio à Pesquisa - Regular