Busca avançada
Ano de início
Entree


Deep reinforcement learning-based secondary control for microgrids in islanded mode

Texto completo
Autor(es):
Barbalho, P. I. N. ; Lacerda, V. A. ; Fernandes, R. A. S. ; Coury, D., V
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: Electric Power Systems Research; v. 212, p. 7-pg., 2022-07-20.
Resumo

Microgrids are generally low-inertia systems with a high penetration of renewable energy sources. The design of advanced control structures is required to keep these grids' electrical variables within an acceptable range. In this context, the present article proposes an intelligent secondary controller for islanded microgrids using the Deep Deterministic Policy Gradient (DDPG). The DDPG controller changes the output power of the storage elements to secure the voltage and frequency stability. This work tested the designed controller for a microgrid that comprises a synchronous generator, two battery energy storage systems and one photovoltaic generator. The controller performance was compared to droop controllers, considering a short-circuit event, feeder and load disconnections. Results showed a consistent reduction of the microgrid's voltage and frequency deviations with the DDPG algorithm. (AU)

Processo FAPESP: 17/16742-7 - Microrredes: identificação e solução de problemas em sistemas híbridos de geração distribuída
Beneficiário:Denis Vinicius Coury
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 21/04872-9 - Avaliação dos impactos técnicos da expansão da geração distribuída em smart grids
Beneficiário:Denis Vinicius Coury
Modalidade de apoio: Auxílio à Pesquisa - Regular