Busca avançada
Ano de início
Entree


Assessing Vulnerabilities of Deep Learning Explainability in Medical Image Analysis Under Adversarial Settings

Texto completo
Autor(es):
Mostrar menos -
de Aguiar, Erikson J. ; Costa, Marcus V. L. ; Traina-, Caetano, Jr. ; Traina, Agora J. M. ; Almeida, JR ; Spiliopoulou, M ; Andrades, JAB ; Placidi, G ; Gonzalez, AR ; Sicilia, R ; Kane, B
Número total de Autores: 11
Tipo de documento: Artigo Científico
Fonte: 2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS; v. N/A, p. 4-pg., 2023-01-01.
Resumo

Deep Learning (DL) is a valuable set of techniques that improve medical decision-making based on imaging exams, such as Chest X-rays (CXR), Computed Tomography (CT), and Optical Coherence Tomography (OCT). However, DL models may be susceptible to adversarial attacks when perturbed (tampered) examples sneak into the data, decreasing the model's confidence. In this paper, we evaluate the vulnerabilities of DL applied to medical images and analyze the effects of attacks on the Gradient-weighted Class Activation Mapping (GRAD-CAM). Our experiments were conducted on two scenarios: (i) CXR images with binary class; (ii) OCT images with multi-class. Vulnerabilities are described by Fooling Rate (FR) and visual analysis of Grad-CAM. We show that the PGD is the most malicious deed for multi-class, reaching an FR of up to 96%, whereas DeepFool is hurtful for binary classes, reaching an FR of up to 93%. Our analysis can be used to understand the adversarial attacks over medical images and their effects on explainability. The developed code is available at GitHub(1). (AU)

Processo FAPESP: 16/17078-0 - Mineração, indexação e visualização de Big Data no contexto de sistemas de apoio à decisão clínica (MIVisBD)
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/07200-9 - Analisando dados complexos vinculados a COVID-19 para apoio à tomada de decisão e prognóstico
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 21/08982-3 - Segurança e privacidade em modelos de aprendizagem de máquina para imagens médicas contra ataques adversários
Beneficiário:Erikson Júlio de Aguiar
Modalidade de apoio: Bolsas no Brasil - Doutorado