Busca avançada
Ano de início
Entree


A Map Matching Based Framework to Reconstruct Vehicular Trajectories from GPS Datasets

Texto completo
Autor(es):
de Sousa, Roniel S. ; Boukerche, Azzedine ; Loureiro, Antonio A. F. ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC); v. N/A, p. 6-pg., 2020-01-01.
Resumo

This paper proposes a new framework to reconstruct vehicle trajectories from GPS datasets. GPS-embedded vehicles generate massive vehicular trajectory data that are crucial for many applications, such as route recommendation, traffic analysis, urban planning, and Intelligent Transportation Systems (ITS). In order to achieve that, it is necessary to employ processing techniques such as noise filtering, segmentation, and map matching to prepare the data to be properly used by real applications. The proposed framework aims to reconstruct the trajectories completely, even from low sampled data, which naturally present gaps. Experimental results show the effectiveness and efficiency of the framework to reconstruct trajectories with different sampling rates and different characteristics. (AU)

Processo FAPESP: 18/23064-8 - Mobilidade na computação urbana: caracterização, modelagem e aplicações (MOBILIS)
Beneficiário:Antonio Alfredo Ferreira Loureiro
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático