Busca avançada
Ano de início
Entree


On the nonlinear self-adjointness and local conservation laws for a class of evolution equations unifying many models

Texto completo
Autor(es):
Freire, Igor Leite ; Santos Sampaio, Julio Cesar
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION; v. 19, n. 2, p. 11-pg., 2014-02-01.
Resumo

In this paper we consider a class of evolution equations up to fifth-order containing many arbitrary smooth functions from the point of view of nonlinear self-adjointness. The studied class includes many important equations modeling different phenomena. In particular, some of the considered equations were studied previously by other researchers from the point of view of quasi self-adjointness or strictly self-adjointness. Therefore we find new local conservation laws for these equations invoking the obtained results on nonlinearly self-adjointness and the conservation theorem proposed by Nail Ibragimov. (c) 2013 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 11/23538-0 - O Teorema de Ibragimov e leis de conservação de equações diferenciais sem Lagrageanas.
Beneficiário:Júlio Cesar Santos Sampaio
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 11/19089-6 - Simetrias de Lie e leis de conservação do sistema de Lane-Emden
Beneficiário:Igor Leite Freire
Modalidade de apoio: Auxílio à Pesquisa - Regular