Busca avançada
Ano de início
Entree


CMFog: Proactive Content Migration Using Markov Chain and MADM in Fog Computing

Texto completo
Autor(es):
Araujo, Marcelo C. ; Sousa, Bruno ; Curado, Marilia ; Bittencourt, Luiz F. ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2020 IEEE/ACM 13TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC 2020); v. N/A, p. 10-pg., 2020-01-01.
Resumo

The popularization of mobile devices has led to the emergence of new demands that the centralized infrastructure of the Cloud has not been able to meet. In this scenario Fog Computing emerges, which migrates part of the computational resources to the edge and offers low latency access to devices connected to the network. Nowadays, many applications have a high level of interactivity and are highly sensitive to latency, thus requiring strategies that allow data migration to follow users' mobility and ensure the QoS (Quality of Service) requirements. In this context, CMFog (Content Migration Fog) is proposed, a proactive migration strategy for virtual machines in the Fog that uses the MADM (Multiple Attribute Decision Making) approach to decide when and where the virtual machine should be migrated. The Markov Chain method is used to predict mobility and to allow migration decisions to be made proactively. The achieved results with CMFog demonstrate a reduction up to 50% in the average latency when compared with the reactive approach used as baseline. (AU)

Processo FAPESP: 18/23064-8 - Mobilidade na computação urbana: caracterização, modelagem e aplicações (MOBILIS)
Beneficiário:Antonio Alfredo Ferreira Loureiro
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático