| Texto completo | |
| Autor(es): |
De Sousa, M. C.
;
Schelin, A. B.
;
Marcus, F. A.
;
Viana, R. L.
;
Caldas, I. L.
Número total de Autores: 5
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Physics Letters A; v. 453, p. 5-pg., 2022-10-14. |
| Resumo | |
Intrinsically coupled nonlinear systems typically present different oscillating components that exchange energy among themselves. A paradigmatic example is the spring pendulum, for which we identify spring, pendulum, and coupled oscillations. We propose a new approach that properly accounts for the nonlinear coupling, and allows the analysis of energy exchanges among the different types of oscillation. We obtain that the rate of energy exchanges is enhanced for chaotic orbits. Moreover, the highest rates for the coupling occur in the vicinity of the homoclinic tangle of the primary hyperbolic point embedded in a chaotic sea. The results demonstrate a clear relation between internal energy exchanges and the dynamics of coupled systems, being an efficient new way to distinguish regular from chaotic orbits. (c) 2022 Elsevier B.V. All rights reserved. (AU) | |
| Processo FAPESP: | 15/05186-0 - Bifurcações e controle de caos na interação onda-partícula |
| Beneficiário: | Meirielen Caetano de Sousa |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |
| Processo FAPESP: | 22/04251-7 - Estruturas Fractais em Física de Plasmas |
| Beneficiário: | Iberê Luiz Caldas |
| Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Brasil |
| Processo FAPESP: | 18/03211-6 - Dinâmica não linear |
| Beneficiário: | Iberê Luiz Caldas |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |