Busca avançada
Ano de início
Entree


A 5/3-approximation for finding spanning trees with many leaves in cubic graphs

Texto completo
Autor(es):
Correa, Jose R. ; Fernandes, Cristina G. ; Matamala, Martin ; Wakabayashi, Yoshiko ; Kaklamanis, C ; Skutella, M
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: Lecture Notes in Computer Science; v. 4927, p. 3-pg., 2008-01-01.
Resumo

For a connected graph G, let L(G) denote the maximum number of leaves in a spanning tree in G. The problem of computing L(G) is known to be NP-hard even for cubic graphs. We improve on Lorys and Zwoiniak's result presenting a 5/3-approximation for this problem on cubic graphs. This result is a consequence of new lower and upper bounds for L(G) which are interesting on their own. We also show a lower bound for L(G) that holds for graphs with minimum degree at least 3. (AU)

Processo FAPESP: 03/09925-5 - Fundamentos da ciência da computação: algoritmos combinatórios e estruturas discretas
Beneficiário:Yoshiharu Kohayakawa
Modalidade de apoio: Auxílio à Pesquisa - Programa PRONEX - Temático