Busca avançada
Ano de início
Entree


KNOWLEDGE-AIDED STAP ALGORITHM USING CONVEX COMBINATION OF INVERSE COVARIANCE MATRICES FOR HETEROGENOUS CLUTTER

Texto completo
Autor(es):
Fa, Rui ; de Lamare, Rodrigo C. ; Nascimento, Vitor H. ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING; v. N/A, p. 4-pg., 2010-01-01.
Resumo

Knowledge-aided space-time adaptive processing (KA-STAP) algorithms, which incorporate a priori knowledge into radar signal processing methods, have the potential to substantially enhance detection performance while combating heterogeneous clutter effects. In this paper, we develop a KA-STAP algorithm to estimate the inverse interference covariance matrix rather than the covariance matrix itself, by combining the inverse of the covariance known a priori, R-0(-1), and the inverse sample covariance matrix estimate (R) over cap -1. The computational load is greatly reduced due to the avoidance of the matrix inversion operation. We also develop a cost-effective algorithm based on the minimum variance (MV) criterion for computing the mixing parameter that performs a convex combination of R-0(-1) and (R) over cap -1. Simulations show the potential of our proposed algorithm, which obtain substantial performance improvements over prior art. (AU)

Processo FAPESP: 08/04828-5 - Processamento de sinais para aplicações em áudio
Beneficiário:Vitor Heloiz Nascimento
Modalidade de apoio: Auxílio à Pesquisa - Regular