Busca avançada
Ano de início
Entree


Fiedler trees for multiscale surface analysis

Texto completo
Autor(es):
Berger, Matt ; Nonato, Luis Gustavo ; Pascucci, Valerio ; Silva, Claudio T.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: COMPUTERS & GRAPHICS-UK; v. 34, n. 3, p. 10-pg., 2010-06-01.
Resumo

In this work we introduce a new hierarchical surface decomposition method for multiscale analysis of surface meshes. In contrast to other multiresolution methods, our approach relies on spectral properties of the surface to build a binary hierarchical decomposition. Namely, we utilize the first nontrivial eigenfunction of the Laplace-Beltrami operator to recursively decompose the surface. For this reason we coin our surface decomposition the Fiedler tree. Using the Fiedler tree ensures a number of attractive properties, including: mesh-independent decomposition, well-formed and nearly equi-areal surface patches, and noise robustness. We show how the evenly distributed patches can be exploited for generating multiresolution high quality uniform meshes. Additionally, our decomposition permits a natural means for carrying out wavelet methods, resulting in an intuitive method for producing feature-sensitive meshes at multiple scales. Published by Elsevier Ltd. (AU)

Processo FAPESP: 08/03349-6 - Processamento geométrico em malhas simpliciais
Beneficiário:Luis Gustavo Nonato
Modalidade de apoio: Bolsas no Exterior - Novas Fronteiras