| Texto completo | |
| Autor(es): |
Hoppen, Carlos
;
Kohayakawa, Yoshiharu
;
Lefmann, Hanno
Número total de Autores: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | EUROPEAN JOURNAL OF COMBINATORICS; v. 33, n. 5, p. 28-pg., 2012-07-01. |
| Resumo | |
For fixed positive integers r, k and E with 1 <= l < r and an r-uniform hypergraph H, let kappa(H, k, l) denote the number of k-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least l elements. Consider the function KC(n, r, k, l) = max(H epsilon Hn) kappa(H, k, l), where the maximum runs over the family H-n of all r-uniform hypergraphs on n vertices. In this paper, we determine the asymptotic behavior of the function KC(n, r, k, l) for every fixed r, k and l and describe the extremal hypergraphs. This variant of a problem of Erdos and Rothschild, who considered edge colorings of graphs without a monochromatic triangle, is related to the Erdos-Ko-Rado Theorem (Erdos et al., 1961 [8]) on intersecting systems of sets. (C) 2011 Elsevier Ltd. All rights reserved. (AU) | |
| Processo FAPESP: | 07/56496-3 - A análise de estruturas discretas de grandes proporções |
| Beneficiário: | Carlos Hoppen |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |