Texto completo | |
Autor(es): |
Ponti, Moacir
;
Picon, Camila T.
;
IEEE
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP); v. N/A, p. 5-pg., 2015-01-01. |
Resumo | |
Image classification often require preprocessing and feature extraction steps that are directly related to the accuracy and speed of the whole task. In this paper we investigate color features extracted from low resolution images, assessing the influence of the resolution settings on the final classification accuracy. We propose a border-interior classification extractor with a logarithmic distance function in order to maintain the discrimination capability in different resolutions. Our study shows that the overall computational effort can be reduced in 98%. Besides, a fast bitwise quantization is performed for its efficiency on converting RGB images to one channel images. The contributions can benefit many applications, when dealing with a large number of images or in scenarios with limited network bandwidth and concerns with power consumption. (AU) | |
Processo FAPESP: | 11/22749-8 - Desafios em visualização exploratória de dados multidimensionais: novos paradigmas, escalabilidade e aplicações |
Beneficiário: | Luis Gustavo Nonato |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |
Processo FAPESP: | 10/19159-1 - Avaliação de descritores de cor para imagens naturais em várias resoluções com auxílio de uma ferramenta de visualização |
Beneficiário: | Camila Tatiana Picon |
Modalidade de apoio: | Bolsas no Brasil - Iniciação Científica |