Sub-variedades Lagrangeanas: teoria de Gromov-Witten aberta e Mirror Symmetry
Álgebras de homotopia, imersões simpléticas e Teoria de Gauge não comutativa
Recursos não clássicos para baterias quânticas em centros de vacâncias de nitrogênio
Texto completo | |
Autor(es): |
Cabrera, Alejandro
;
Dherin, Benoit
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | INTERNATIONAL MATHEMATICS RESEARCH NOTICES; v. 2016, n. 7, p. 26-pg., 2016-01-01. |
Resumo | |
We study the relationship between several constructions of symplectic realizations of a given Poisson manifold. Our main result is a general formula for a formal symplectic realization in the case of an arbitrary Poisson structure on R-n. This formula is expressed in terms of rooted trees and elementary differentials, building on the work of Butcher, and the coefficients are shown to be a generalization of Bernoulli numbers appearing in the linear Poisson case. We also show that this realization coincides with a formal version of the original construction of Weinstein, when suitably put in global Darboux form, and with the realization coming from tree-level part of Kontsevich's star product. We provide a simple iterated integral expression for the relevant coefficients and show that they coincide with underlying Kontsevich weights. (AU) | |
Processo FAPESP: | 10/19365-0 - Geometrias monoidais |
Beneficiário: | Benoit Richard Umbert Dherin |
Modalidade de apoio: | Bolsas no Brasil - Jovens Pesquisadores |
Processo FAPESP: | 10/15069-8 - Geometrias monoidais |
Beneficiário: | Benoit Richard Umbert Dherin |
Modalidade de apoio: | Auxílio à Pesquisa - Jovens Pesquisadores |