Busca avançada
Ano de início
Entree


A PTAS for the metric case of the minimum sum-requirement communication spanning tree problem

Texto completo
Autor(es):
Ravelo, S. V. ; Ferreira, C. E.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: DISCRETE APPLIED MATHEMATICS; v. 228, p. 18-pg., 2017-09-10.
Resumo

This work considers the metric case of the minimum sum-requirement communication spanning tree problem (SROCT), which is an NP-hard particular case of the minimum communication spanning tree problem (OCT). Given an undirected graph G = (V, E) with non-negative lengths omega(e) associated to the edges satisfying the triangular inequality and non-negative routing weights r(u) associated to nodes u E V, the objective is to find a spanning tree T of G, that minimizes: 1/2 Sigma u is an element of V Sigma u is an element of V (r(u) + r(v)) d(T, u, v), where d(H, x, y) is the minimum distance between nodes x and y in a graph H subset of G. We present a polynomial approximation scheme for the metric case of the SROCT improving the until now best existing approximation algorithm for this problem. (C) 2016 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 13/03447-6 - Estruturas combinatórias, otimização e algoritmos em Teoria da Computação
Beneficiário:Carlos Eduardo Ferreira
Modalidade de apoio: Auxílio à Pesquisa - Temático