Busca avançada
Ano de início
Entree


Introducing Learning Automata to Financial Portfolio Components Selection

Texto completo
Autor(es):
Sbruzzi, Elton F. ; Leles, Michel C. R. ; Nascimento, Cairo L., Jr. ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 12TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON2018); v. N/A, p. 6-pg., 2018-01-01.
Resumo

In this paper, we introduce a novel method to select the components of a portfolio of securities. This method is based on a reinforcement learning technique known as learning automata. Several heuristic solutions for the portfolio weights selection problem have been introduced in literature. The point is that these applications assumes that portfolio components are given. The difference of our work is that we propose some heuristic in order to select the portfolio components instead of the weights. In terms of heuristic, we propose learning automata because its ability to solve complex systems such as a the optimal portfolio components. We test the use of learning automata in terms of financial indicators optimization. Our findings show that our proposed method improves the portfolio optimization performance in terms of accuracy and computational effort. (AU)

Processo FAPESP: 17/20248-8 - Aplicação de técnicas de inteligência computacional e de análise de Big Data em um experimento com sistemas multi-agentes na área de finanças
Beneficiário:Michel Carlo Rodrigues Leles
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 16/04992-6 - Aplicação de técnicas de inteligência computacional e de análise de Big Data em um experimento com sistemas multi-agentes na área de finanças
Beneficiário:Cairo Lúcio Nascimento Júnior
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Regular