Busca avançada
Ano de início
Entree


On Minimum Entropy Deconvolution of Bi-level Images

Texto completo
Autor(es):
Nose-Filho, K. ; Takahata, A. K. ; Suyama, R. ; Lopes, R. ; Romano, J. M. T. ; Tichavsky, P ; BabaieZadeh, M ; Michel, OJJ ; ThirionMoreau, N
Número total de Autores: 9
Tipo de documento: Artigo Científico
Fonte: LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2017); v. 10169, p. 10-pg., 2017-01-01.
Resumo

Minimum Entropy Deconvolution (MED) is a sparse blind deconvolution method that searches for a deconvolution filter that leads to the most sparse output, assuming that the desired signal is originally sparse. The present work establishes sufficient conditions for the blind deconvolution of sparse images. Then, based on a measure of sparsity given by the ratio of L-p-norms, we derive a gradient based algorithm for the blind deconvolution of bi-level images, more specifically, for the blind deconvolution of blurred QR Codes. Finally, simulation results are presented considering both synthetic and real data and shows the possibility of achieving really good results by the light of a very simple algorithm. (AU)

Processo FAPESP: 15/07048-4 - Separação Cega de Fontes: Análise por Componentes Esparsas em Misturas Convolutivas e em Misturas Não Lineares
Beneficiário:Kenji Nose Filho
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado