Busca avançada
Ano de início
Entree


A Fast CUDA-based Implementation for the Euclidean Distance Transform

Texto completo
Autor(es):
Zampirolli, Francisco de Assis ; Filipe, Leonardo ; Smari, WW
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: 2017 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS); v. N/A, p. 4-pg., 2017-01-01.
Resumo

In Image Processing efficient algorithms are always pursued for applications that use the most advanced hardware architectures. Distance Transform is a classic operation for blurring effects, skeletonizing, segmentation and various other purposes. This article presents two implementations of the Euclidean Distance Transform using CUDA (Compute Unified Device Architecture) in GPU (Graphics Process Unit): of the Meijster's Sequential Algorithm and another is a very efficient algorithm of simple structure. Both using only shared memory. The results presented herein used images of various types and sizes to show a faster run time compared with the best-known implementations in CPU. (AU)

Processo FAPESP: 09/14430-1 - Modelagem de objetos usando morfologia matemática e grafos de vizinhança
Beneficiário:Francisco de Assis Zampirolli
Modalidade de apoio: Auxílio à Pesquisa - Regular