Estudo de fenômenos coletivos em sistemas físicos e biológicos
Sincronização de osciladores de kuramoto com acoplamentos generalizados
Estudo de Sincronização de fase em Redes de Osciladores e aplicações à recuperação...
Texto completo | |
Autor(es): |
Peter, Franziska
;
Gong, Chen Chris
;
Pikovsky, Arkady
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | PHYSICAL REVIEW E; v. 100, n. 3, p. 6-pg., 2019-09-13. |
Resumo | |
Supercritical Kuramoto oscillators with distributed frequencies can be separated into two disjoint groups: an ordered one locked to the mean field, and a disordered one consisting of effectively decoupled oscillators-at least so in the thermodynamic limit. In finite ensembles, in contrast, such clear separation fails: The mean field fluctuates due to finite-size effects and thereby induces order in the disordered group. This publication demonstrates this effect, similar to noise-induced synchronization, in a purely deterministic system. We start by modeling the situation as a stationary mean field with additional white noise acting on a pair of unlocked Kuramoto oscillators. An analytical expression shows that the cross-correlation between the two increases with decreasing ratio of natural frequency difference and noise intensity. In a deterministic finite Kuramoto model, the strength of the mean-field fluctuations is inextricably linked to the typical natural frequency difference. Therefore, we let a fluctuating mean field, generated by a finite ensemble of active oscillators, act on pairs of passive oscillators with a microscopic natural frequency difference between which we then measure the cross-correlation, at both super- and subcritical coupling. (AU) | |
Processo FAPESP: | 15/50122-0 - Fenômenos dinâmicos em redes complexas: fundamentos e aplicações |
Beneficiário: | Elbert Einstein Nehrer Macau |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |