Busca avançada
Ano de início
Entree


A class of residuals for outlier identification in zero adjusted regression models

Texto completo
Autor(es):
Pereira, Gustavo H. A. ; Scudilio, Juliana ; Santos-Neto, Manoel ; Botter, Denise A. ; Sandoval, Monica C.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: Journal of Applied Statistics; v. 47, n. 10, p. 15-pg., 2019-11-30.
Resumo

Zero adjusted regression models are used to fit variables that are discrete at zero and continuous at some interval of the positive real numbers. Diagnostic analysis in these models is usually performed using the randomized quantile residual, which is useful for checking the overall adequacy of a zero adjusted regression model. However, it may fail to identify some outliers. In this work, we introduce a class of residuals for outlier identification in zero adjusted regression models. Monte Carlo simulation studies and two applications suggest that one of the residuals of the class introduced here has good properties and detects outliers that are not identified by the randomized quantile residual. (AU)

Processo FAPESP: 13/17876-6 - Melhoramento de resíduos em modelos de regressão inflacionados no zero
Beneficiário:Gustavo Henrique de Araujo Pereira
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado