Busca avançada
Ano de início
Entree


Image Segmentation by Relaxed Deep Extreme Cut with Connected Extreme Points

Texto completo
Autor(es):
Oliveira, Debora E. C. ; Demario, Caio L. ; Miranda, Paulo A., V
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: DISCRETE GEOMETRY AND MATHEMATICAL MORPHOLOGY, DGMM 2021; v. 12708, p. 13-pg., 2021-01-01.
Resumo

In this work, we propose a hybrid method for image segmentation based on the selection of four extreme points (leftmost, rightmost, top and bottom pixels at the object boundary), combining Deep Extreme Cut, a connectivity constraint for the extreme points, a marker-based color classifier from automatically estimated markers and a final relaxation procedure with the boundary polarity constraint, which is related to the extension of Random Walks to directed graphs as proposed by Singaraju et al. Its second constituent element presents theoretical contributions on how to optimally convert the 4 point boundary-based selection into connected region-based markers for image segmentation. The proposed method is able to correct imperfections from Deep Extreme Cut, leading to considerably improved results, in public datasets of natural images, with minimal user intervention (only four mouse clicks). (AU)

Processo FAPESP: 16/21591-5 - Desenvolvimento de métodos robustos para delineamento de bordas em imagens utilizando grafos
Beneficiário:Fábio Augusto Menocci Cappabianco
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 14/50937-1 - INCT 2014: da Internet do Futuro
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático