| Texto completo | |
| Autor(es): |
Benato, Barbara C.
;
Gomes, Jancarlo F.
;
Telea, Alexandru C.
;
Falcao, Alexandre Xavier
Número total de Autores: 4
|
| Tipo de documento: | Artigo Científico |
| Fonte: | PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2021; v. 12702, p. 11-pg., 2021-01-01. |
| Resumo | |
Expert human supervision of the large labeled training sets needed by convolutional neural networks is expensive. To obtain sufficient labeled samples to train a model, one can propagate labels from a small set of supervised samples to a large unsupervised set. Yet, such methods need many supervised samples for validation. We present a method that iteratively trains a deep neural network (VGG-16) from labeled samples created by projecting the features of VGG-16's last max-pooling layer in 2D with t-SNE and propagating labels with the Optimum-Path Forest semi-supervised classifier. As the labeled set improves along iterations, it improves the network's features. We show how this significantly improves classification results on test data (using only 1% to 5% of supervised samples) of three private challenging datasets and two public ones. (AU) | |
| Processo FAPESP: | 19/10705-8 - Aprendizado Ativo Visual guiado por Projeções de Características |
| Beneficiário: | Bárbara Caroline Benato |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |
| Processo FAPESP: | 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo? |
| Beneficiário: | Alexandre Xavier Falcão |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |