Busca avançada
Ano de início
Entree


Deep learning waveform anomaly detector for numerical relativity catalogs

Texto completo
Autor(es):
Pereira, Tiberio ; Sturani, Riccardo
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: GENERAL RELATIVITY AND GRAVITATION; v. 56, n. 2, p. 21-pg., 2024-02-01.
Resumo

Numerical Relativity has been of fundamental importance for studying compact binary coalescence dynamics, waveform modelling, and eventually for gravitational waves observations. As the sensitivity of the detector network improves, more precise template modelling will be necessary to guarantee a more accurate estimation of astrophysical parameters. To help improve the accuracy of numerical relativity catalogs, we developed a deep learning model capable of detecting anomalous waveforms. We analyzed 1341 binary black hole simulations from the SXS catalog with various mass-ratios and spins, considering waveform dominant and higher modes. In the set of waveform analyzed, we found and categorised seven types of anomalies appearing in the coalescence phases. (AU)

Processo FAPESP: 16/01343-7 - ICTP Instituto Sul-Americano para Física Fundamental: um centro regional para física teórica
Beneficiário:Nathan Jacob Berkovits
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais