Busca avançada
Ano de início
Entree


AN ALLARD-TYPE BOUNDARY REGULARITY THEOREM FOR 2d MINIMIZING CURRENTS AT SMOOTH CURVES WITHARBITRARY MULTIPLICITY

Texto completo
Autor(es):
De Lellis, Camillo ; Nardulli, Stefano ; Steinbruchel, Simone
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: PUBLICATIONS MATHEMATIQUES DE L IHES; v. 140, n. 1, p. 118-pg., 2024-02-21.
Resumo

We consider integral area-minimizing 2-dimensional currents T in U subset of R2+n with partial derivative T = Q parallel to Gamma parallel to, where Q is an element of N\{0} and Gamma is sufficiently smooth. We prove that, if q is an element of Gamma is a point where the density of T is strictly below Q+1/2, then the current is regular at q. The regularity is understood in the following sense: there is a neighborhood of q in which T consists of a finite number of regular minimal submanifolds meeting transversally at Gamma (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for Q = 1. As a corollary, if Omega subset of R2+n is a bounded uniformly convex set and Gamma subset of partial derivative Omega a smooth 1-dimensional closed submanifold, then any area-minimizing current T with partial derivative T = Q parallel to Gamma parallel to is regular in a neighborhood of Gamma. (AU)

Processo FAPESP: 18/22938-4 - Regularidade ao bordo para correntes que minimizam a área
Beneficiário:Stefano Nardulli
Modalidade de apoio: Bolsas no Exterior - Pesquisa
Processo FAPESP: 21/05256-0 - Problemas variacionais geométricos: existência, regularidade e caracterização geométrica de soluções
Beneficiário:Stefano Nardulli
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores