Busca avançada
Ano de início
Entree


SHARq: Sharing Recursive Queries in Relational Databases

Texto completo
Autor(es):
Scabora, Lucas C. ; Spadon, Gabriel ; Cazzolato, Mirela T. ; Kaster, Daniel S. ; Traina, Agma J. M. ; Rodrigues-, Jose F., Jr. ; Traina-, Caetano, Jr.
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: 36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021; v. N/A, p. 4-pg., 2021-01-01.
Resumo

Processing navigational graph-like queries in relational databases requires executing several recursive join operations, which are computationally costly. However, when the need for graph-like queries arises, applications often execute a sequence of related queries in a single session. We argue that it is possible to reduce the total cost of a set of related queries, by expanding individual intermediate results and sharing them among multiple queries. SHARq is our framework that enables sharing intermediate results of the common graph-like queries Single-Source Shortest Paths (SSSP), Connected Components (CC), and PageRank (PR). Our solution prepares result tables expanded with additional columns to store partial results of graph-like query combinations, such as multiple SSSP, or a sequence of queries comprising SSSP, CC, and PR. Experimental results on 9 datasets show query speedups of up to ten times when combining multiple SSSP queries, and up to two times when combining SSSP, CC, and PR queries. The results reveal a significant reduction in the query time, providing timely results for analyses relying on multiple navigational graph-like queries. (AU)

Processo FAPESP: 19/04461-9 - Prognóstico médico avançado baseado em conceitos de grafos e redes neurais artificiais
Beneficiário:Gabriel Spadon de Souza
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 16/17330-1 - Armazenamento e Operações de Navegação em Grafos em SGBDs Relacionais
Beneficiário:Lucas de Carvalho Scabora
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 18/24414-2 - Ambiente para integração de técnicas para a extração de características e bases de dados complexos para o projeto MIVisBD
Beneficiário:Mirela Teixeira Cazzolato
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico
Processo FAPESP: 20/11258-2 - Consultas por similaridade e interoperabilidade em bases de dados médicos
Beneficiário:Mirela Teixeira Cazzolato
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 16/17078-0 - Mineração, indexação e visualização de Big Data no contexto de sistemas de apoio à decisão clínica (MIVisBD)
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/08376-0 - Análise e aperfeiçoamento de sistemas urbanos por meio de mapas digitais representados por redes complexas
Beneficiário:Gabriel Spadon de Souza
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 20/07200-9 - Analisando dados complexos vinculados a COVID-19 para apoio à tomada de decisão e prognóstico
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Regular