| Texto completo | |
| Autor(es): |
Cancian, Bruno P.
;
Andrade, Jose C. G.
;
Freitas, Walmir
Número total de Autores: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | 2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM; v. N/A, p. 5-pg., 2023-01-01. |
| Resumo | |
In the past years, an increasing number of residential customers have installed rooftop solar photovoltaics (PVs). Most of these PVs are located behind-the-meter (BTM), Le., invisible to utilities, which poses challenges to system operation and planning. Therefore, a methodology to detect and estimate the installed capacity of customer-level BTM PVs utilizing only net power curves and weather data is proposed in this paper. The methodology is based on the grouping of PV generation and pairing of native demand that feed algorithms based on support vector machine (SVM) built to detect and estimate the installed capacity of BTM PVs. The results using two datasets (real and synthetical) show that false positive and false negative rates in detection are limited to 9.09%. In the estimation method, the root mean square error (RMSE) is lower than the rated power of a single PV panel, ensuring the precision of the developed method. (AU) | |
| Processo FAPESP: | 22/11692-0 - Metodologias para desagregação entre carga e geração em sistemas de distribuição de energia elétrica com uso de medidores inteligentes |
| Beneficiário: | Bruno Pissinatto Cancian |
| Modalidade de apoio: | Bolsas no Brasil - Mestrado |
| Processo FAPESP: | 21/11380-5 - CPTEn - Centro Paulista de Estudos da Transição Energética |
| Beneficiário: | Luiz Carlos Pereira da Silva |
| Modalidade de apoio: | Auxílio à Pesquisa - Centros de Ciência para o Desenvolvimento |