Busca avançada
Ano de início
Entree


An Autonomous System for Predicting DDoS Attacks on Local Area Networks and the Internet

Texto completo
Autor(es):
Brito, Davi ; de Neira, Anderson B. ; Borges, Ligia F. ; Nogueira, Michele
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2023 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS, LATINCOM; v. N/A, p. 6-pg., 2023-01-01.
Resumo

Distributed denial of service (DDoS) attacks continuously evolve, causing losses and increasing service costs. The high volume and fast scaling make it difficult to defend from them. DDoS attack detection is not sufficient to protect the services from attacks. Thus, it is necessary to design prediction strategies to confront these attacks. When it is possible to identify the preparation for attacks, the time to combat them increases. This paper proposes a self-adaptable system to identify DDoS attack preparation and predict them. The system automatically determines the most appropriate neural network architecture for predicting attacks in different scenarios. The system predicts a DDoS attack with an accuracy of 97.89%, higher than the literature, and the prediction occurs 29 minutes before it starts. (AU)

Processo FAPESP: 22/06840-0 - Impacto da correlação de fontes heterogêneas na predição de botnets e DDoS
Beneficiário:Ligia Francielle Borges
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 22/06802-0 - Auxiliar a Configuração de ilhas FIBRE para condução de experimentos na área de cibersegurança com IoT
Beneficiário:Davi Esondem Menezes Brito
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica